Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(7): 905-925, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37649886

RESUMO

The basic leucine zipper (bZIP) protein transcription factors are known to modulate development, plant growth, metabolic response, and resistance to several biotic and abiotic stressors and have been widely studied in the model plant Arabidopsis thaliana. However, no comprehensive information about the bZIP transcription factor family in Artemisia annua has been explored to date. In this genome-wide study, we identified 61 bZIP TFs after removing false positives and incomplete sequences from Artemisia annua. Seven highly expressed homolog AabZIP TF genes under UV-B and differential light conditions in different tissues were identified from the publicly available microarray dataset as having their cis-regulatory elements involved in, flavonoids biosynthesis, seed-specific gene regulation, stress responses, and metabolic regulation. In-silico analysis and electrophoretic mobility shift assay (EMSA) confirmed the interaction of AabZIP19 TF over the AaPAL1 promoter in order to regulate the phenolics and flavonoid biosynthesis via the phenylpropanoid pathway. Further, RT-PCR analysis has been carried out to validate the transcript levels of selected AabZIP genes under white light, red light, blue light (45 min), and UV-B exposure (12 and 24 h). These genes have their highest expression levels under UV-B and blue light exposure, in contrast with white light. Therefore, the detection of ROS through staining confirms the accumulation of superoxide radicals and H2O2, and in addition to reducing ROS accumulation under UV-B and blue light irradiation, total phenols and flavonoids are significantly enhanced. This study laid the groundwork for deciphering the possible role of AabZIP TFs under different light stress-responsive conditions and in the regulation of secondary metabolism. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01338-0.

2.
Neurosci Lett ; 764: 136294, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655710

RESUMO

Cholinergic dysfunction has been commonly known to be associated with plethora of neurodegenerative disorders and also serves as a biomarker. Recently, cholinergic system demonstrated that acetylcholine has major role in regulation of its function therefore the main therapeutic regimens towards disease management have been focused on increasing acetylcholine levels. The current study explores the potential of Asparagus racemosus extract (ARE) and its bioactive molecule Shatavarin IV (SIV) in improving cholinergic transmission via utilizing Caenorhabditis elegans considering as a model system. Observations and results obtained through this study have clearly showed significant modulation in cholinergic function by increasing acetylcholine (ACh) levels and the nicotinic acetylcholine receptors (nAChRs) activity. Further exploration on mechanistic facet pointed towards ARE and SIV modulatory potential through increased synaptic ACh level by blocking acetyl cholinesterase at enzyme level and by regulating increment in transcript level of cha-1, and cho-1 that are directly responsible for the synthesis of ACh. Further, the up-regulation of unc-38 and unc-50 transcripts could be the reason for enhanced nAChR activity and investigation on stress modulator activity showed excellent efficiency of ARE and SIV in diminishing ROS thereby lowering the oxidative damage.


Assuntos
Asparagus/química , Inibidores da Colinesterase/farmacologia , Extratos Vegetais/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Inibidores da Colinesterase/isolamento & purificação , Modelos Animais , Extratos Vegetais/isolamento & purificação , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
3.
Physiol Mol Biol Plants ; 27(8): 1823-1835, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34393390

RESUMO

Accumulation of secondary metabolites is a key process in the growth and development of plants under different biotic/abiotic constraints. Many studies highlighted the regulatory potential of UV-B treatment towards the secondary metabolism of plants. In the present study, we examined the impact of UV-B on the physiology and secondary metabolism of Withania coagulans, which is an important ayurvedic plant with high anti-diabetic potential. Results showed that in-vitro UV-B exposure negatively influenced chlorophyll content and photosynthetic machinery. However, Fv/Fm ratio was found non-significantly altered up to 3 h UV-B exposure. The maximum lipid peroxidation level was recorded with 46.8% higher malondialdehyde content in the plants supplemented with 5 h UV-B radiation, that was indicated the oxidative stress in W. coagulans. Conversely, UV-B treatment significantly increased the plant's stress protective compounds like carotenoids, anthocyanin, phenol and proline, in W. coagulans. Free radical scavenging activity was also significantly increased ~ 18% than the control with 3 h UV-B treatment. The maximum antioxidative enzymes activities were observed with the short-term (up to 3 h) UV-B treatment. Specifically, UV-B radiation exposure significantly increased the content of withaferin A and withanolide A in W. coagulans with maximum 1.38 and 3.42-folds, respectively. Additionally, withanolides biosynthesis related genes transcript levels were found over-expressed under the response of UV-B elicitation. The acquired results suggested that short-term UV-B supplementation triggers secondary metabolism along with combating oxidative stress via improving the antioxidative defense system in W. coagulans. Also, UV-B can be used as an efficient abiotic elicitor to increase pharmaceutical compounds (withanolides) production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01046-7.

4.
Plant Biotechnol Rep ; 15(3): 317-334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122662

RESUMO

The present study provides the first report of heterologous expression of phytochelatin synthase from Anabaena PCC 7120 (anaPCS) into the hairy roots of Artemisia annua. Transformed hairy roots of A. annua expressing anaPCS gene showed better tolerance to heavy metals, viz., arsenic (As) and cadmium (Cd) owing to 143 and 191% more As- and Cd-accumulation, respectively, as compared to normal roots with a bioconcentration factor (BCF) of 9.7 and 21.1 for As and Cd, respectively. Under As and Cd stresses, transformed hairy roots possessed significantly higher amounts of phytochelatins and thiols probably due to the presence of both AaPCS (Artemisia annua PCS) and anaPCS. In addition, artemisinin synthesis was also induced in transformed hairy roots under heavy metals stresses. In-silico analysis revealed the presence of conserved motifs in both AaPCS and anaPCS sequences as well as structural modelling of PCS functional domain was conducted. Interaction of AaPCS and anaPCS proteins with CdCl2 and sodium arsenate gene ontology analysis gave insights to anaPCS functioning in transformed hairy roots of A. annua. The study provides transformed hairy roots of A. annua as an efficient tool for effective phytoremediation with added advantages of artemisinin extraction from hairy roots used for phytoremediation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11816-021-00682-5.

5.
Plant Cell Rep ; 40(2): 283-299, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151379

RESUMO

KEY MESSAGE: Withania coagulans (L.) Dunal bio-synthesized silver nanoparticles (WcAgNPs) worked as an abiotic elicitor or auto-catalyst that enhanced root regeneration and withanolides production in in-vitro regenerated W. coagulans. Rapid development in the production / consumption of silver nanoparticles (AgNPs) raised serious concern over its effects on the growth of natural plant community. The knowledge related to impact of AgNPs on plant growth and biocompatibility is increasing day by day, but comprehensive mechanism and gaps regarding their impacts on plant health have yet to be addressed. In the present study, we investigated the impact of Withania coagulans biosynthesized AgNPs (WcAgNPs) on in-vitro plant growth and withanolides production. Obtained results showed that the low concentrations of WcAgNPs significantly induced the plant growth by regulating oxidative stress via anti-oxidative defense system. Physiological, morphology and anatomical features also reflected healthy plant growth under low WcAgNPs exposure. While higher concentrations of WcAgNPs have a negative impact on W. coagulans plant growth due to induced lipid peroxidation, ROS accumulation, and root cell death. At lower concentrations, WcAgNPs have shown a positive effect on in-planta withanolides biosynthesis stimulating withanolide A and withaferin A up to 11.15-22.8-fold, respectively. Furthermore, the expression of withanolides biosynthetic genes were also quantified upon WcAgNPs exposure and terpenes biosynthetic genes showed over-expression. Thus, the present study concludes that the lower concentrations of WcAgNPs positively induced plant growth via improved root organogenesis and also have potential to act as an elicitor for withanolides production.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Withania/metabolismo , Vitanolídeos/metabolismo , Morte Celular , Expressão Gênica , Peroxidação de Lipídeos , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Withania/genética , Withania/crescimento & desenvolvimento
6.
Planta ; 249(2): 497-514, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30267151

RESUMO

MAIN CONCLUSION: UV-B-induced flavonoid biosynthesis is epigenetically regulated by site-specific demethylation of AaMYB1, AaMYC, and AaWRKY TF-binding sites inAaPAL1promoter-causing overexpression ofAaPALgene inArtemisia annua. The present study was undertaken to understand the epigenetic regulation of flavonoid biosynthesis under the influence of ultraviolet-B radiation using Artemisia annua L. as an experimental model. In-vitro propagated and acclimatized plantlets were treated with UV-B radiation (2.8 W m-2; 3 h), which resulted in enhanced accumulation of total flavonoid and phenolics content as well as eleven individual flavonoids measured through HPLC-DAC. Expression of eight genes (phenylanaline ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate: CoA ligase; chalcone synthase, chalcone isomerase, cinnamoyl reductase, flavonoid-3'-hydroxylase, and flavones synthase) from upstream and downstream flavonoid biosynthetic pathways was measured through RT-PCR and RT-Q-PCR and all were variably induced under UV-B irradiation. Among them, AaPAL1 transcript and its protein were most significantly upregulated. Global DNA methylation analysis revealed hypomethylation of genomic DNA in A. annua. Further epigenetic characterization of promoter region of AaPAL1 revealed cytosine demethylation at five sites, which in turn caused epigenetic activation of six transcription factor-binding sites including QELEMENT, EBOXBNNAPA/MYCCONSENSUSAT, MYBCORE, MYBCOREATCYCB1, and GCCCORE. MYB transcription factors are positive regulators of flavonoid biosynthesis. Epigenetic activation of transcription-enhancing cis-regulatory elements in AaPAL1 promoter and subsequent overexpression of AaMYB1 and AaMYC and AaWRKY transcription factors under UV-B irradiation may probably be the reason for higher AaPAL1 expression and hence greater biosynthesis of flavonoids in A. annua L. The present study is the first report that provides mechanistic evidence of epigenetic regulation of flavonoid biosynthesis under UV-B radiation in A. annua L.


Assuntos
Artemisia annua/efeitos da radiação , Epigênese Genética , Flavonoides/metabolismo , Raios Ultravioleta , Aciltransferases/metabolismo , Artemisia annua/química , Artemisia annua/genética , Artemisia annua/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Desmetilação do DNA/efeitos da radiação , Flavonoides/análise , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Liases/metabolismo , Redes e Vias Metabólicas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Transcriptoma
7.
Plant Physiol Biochem ; 132: 590-602, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30326438

RESUMO

This study was designed to investigate the effect of exogenous application of salicylic acid (SA) on proteins pattern and secondary metabolites in arsenic (As) stressed Artemisia annua. A. annua was treated by As 100 µM, SA 100 µM and combined treatment of SA 100 µM + As 100 µM upto 3 days. Significant accumulation of As was observed in roots than shoots at As 100 µM treatment. Under As treatment, oxidative stress was induced as indicated by increased TBARS content. Biomass, carotenoid, flavonoids were enhanced whereas total chlorophyll pigment was reduced under As treatment. Combined treatment of SA 100 µM + As 100 µM was more effective for increment of biomass, total chlorophyll content, and flavonoids as compared to As 100 µM treatment. Protein profiling revealed 20 differentially abundant proteins by 2-DE PAGE and MALDI-TOF-MS analysis. Identified proteins were related to photosynthesis, energy metabolism, transcriptional regulators, secondary metabolism, lipid metabolism, transport proteins and unknown/hypothetical proteins. All identified proteins were significantly increased in abundance under combined treatments of SA 100 µM + As 100 µM. The expression analysis of key genes involved in biosynthesis of lipid metabolism, signal molecule, transcriptional regulators, artemisinin biosynthetic genes, isoprenoids pathway, terpenes and flavonoids pathway were significantly upregulated under combined treatments of SA 100 µM + As 100 µM, suggesting a fine linkage in regulation of primary and secondary metabolism to modulate tolerance capacity and to improve phytoremediation property of A. annua against arsenic toxicity.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arsênio/toxicidade , Artemisia annua/genética , Artemisia annua/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteoma/metabolismo , Ácido Salicílico/farmacologia , Metabolismo Secundário/genética , Artemisia annua/efeitos dos fármacos , Biomassa , Carotenoides/metabolismo , Clorofila/metabolismo , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Flavonoides/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Biológicos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Transcrição Gênica
8.
Protoplasma ; 255(1): 139-152, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28667412

RESUMO

The present study was undertaken to find out individual and interactive effects of arsenic (As) and salicylic acid (SA) on an important medicinal plant, Artemisia annua. As uptake and its accumulation was detected and found to be maximum in roots at higher As concentration (150 µM). Under As treatments, H2O2 and MDA content were induced. Biomass and chlorophyll content were negatively affected under As treatments. Furthermore, enzymatic (SOD, CAT, APX, and GR) and non-enzymatic antioxidants were also enhanced under As treatments. Exogenous application of SA reduced the extent of H2O2 and O2- generation and lipid peroxidation, while reverted biomass and chlorophyll content to overcome oxidative stress. Simultaneous application of SA with As increased endogenous SA level, artemisinin, and dihydroartemisinic acid as compared with individual As treatment and pre-application of SA with As treatments. The expression of four key artemisinin biosynthetic pathway genes, i.e., ADS, CYP71AV1, DBR2, and ALDH1 were upregulated at a maximum in plants simultaneously treated with SA and As. Similar pattern of artemisinin accumulation and glandular trichome size was observed which attest that SA has a stimulatory impact on artemisinin biosynthesis under As stress. Our study suggests that exogenous application of SA and As together induced more tolerance in A. annua than a comparable dose of SA pre-treatment. The study may provide a platform with dual benefits by developing As-tolerant plants to be used for phytoremediation of arsenic from As-contaminated soil and obtaining high artemisinin-producing A. annua plants.


Assuntos
Arsênio/metabolismo , Artemisia annua/efeitos dos fármacos , Ácido Salicílico/metabolismo , Tricomas/metabolismo , Antioxidantes
9.
Protoplasma ; 253(1): 15-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25813833

RESUMO

Application of traditional Chinese drug, artemisinin, originally derived from Artemisia annua L., in malaria therapy has now been globally accepted. Artemisinin and its derivatives, with their established safety records, form the first line of malaria treatment via artemisinin combination therapies (ACTs). In addition to its antimalarial effects, artemisinin has recently been evaluated in terms of its antitumour, antibacterial, antiviral, antileishmanial, antischistosomiatic, herbicidal and other properties. However, low levels of artemisinin in plants have emerged various conventional, transgenic and nontransgenic approaches for enhanced production of the drug. According to WHO (2014), approximately 3.2 billion people are at risk of this disease. However, unfortunately, artemisinin availability is still facing its short supply. To fulfil artemisinin's global demand, no single method alone is reliable, and there is a need to collectively use conventional and advanced approaches for its higher production. Further, it is the unique structure of artemisinin that makes it a potential drug not only against malaria but to other diseases as well. Execution of its action through multiple mechanisms is probably the reason behind its wide spectrum of action. Unfortunately, due to clues for developing artemisinin resistance in malaria parasites, it has become desirable to explore all possible modes of action of artemisinin so that new generation antimalarial drugs can be developed in future. The present review provides a comprehensive updates on artemisinin modes of action and strategies for enhanced artemisinin production at global level.


Assuntos
Artemisininas/metabolismo , Artemisininas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Artemisininas/química , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Resistência a Medicamentos/efeitos dos fármacos , Modelos Biológicos
10.
Protoplasma ; 253(2): 503-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26016607

RESUMO

Psoriasis is a chronic autoimmune human skin disorder that is characterized by excessive proliferation of keratinocytes, scaly plaques, severe inflammation and erythema. The pathophysiology of psoriasis involves interplay between epidermal keratinocytes, T lymphocytes, leukocytes and vascular endothelium. Increased leukocyte recruitment and elevated levels of cytokines, growth factors and genetic factors like interleukin (IL)-1ß, IL-6, IL-17, IL-22, IL-23, tumour necrosis factor (TNF)-α, interferon (IFN)-γ, transforming growth factor (TGF)-ß, toll-like receptor (TLR)-2, signal transducer and activator of transcription (STAT-3), 15-lipoxygenase (LOX)-2, coiled-coil alpha-helical rod protein 1 (CCHCR1), steroidogenic acute regulatory protein (StAR) and vitamin D receptor (VDR) are the most critical factors governing the exacerbation of psoriasis. In the present study, an attempt was made to elucidate the preventive role of herbal extracts of four dermo-protective Ayurvedic plants, Tinospora cordifolia (TC), Curcuma longa (CL), Celastrus paniculatus (CP) and Aloe vera (AV), against psoriasis-like dermatitis. Parkes (P) strain mice were initially induced with psoriasis-like dermatitis using topical application of imiquimod (IMQ, 5 %), followed by subsequent treatment with the herbal extracts to examine their curative effect on the psoriasis-like dermatitis-induced mice. The extracts were orally/topically administered to mice according to their ED/LD50 doses. Phenotypical observations, histological examinations, and semi-quantitative reverse transcription PCR (RT-PCR) analyses of the skin and blood samples of the control, IMQ-treated and herbal extract-treated psoriasis-like dermatitis-induced mice lead to the conclusion that the combination extract from all the plants was instrumental in downregulating the overexpressed cytokines, which was followed by the CL extract. Moreover, lesser yet positive response was evident from CP and TC extracts. The results suggest that these plants can prove to have tremendous preventive potential against the disease and can open the way to new therapeutic strategies for psoriasis treatment.


Assuntos
Dermatite de Contato/tratamento farmacológico , Extratos Vegetais/farmacologia , Psoríase/tratamento farmacológico , Aloe/química , Aminoquinolinas , Animais , Celastrus/química , Curcuma/química , Citocinas/genética , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Expressão Gênica , Imiquimode , Masculino , Camundongos , Extratos Vegetais/uso terapêutico , Caules de Planta/química , Plantas Medicinais/química , Psoríase/induzido quimicamente , Pele/efeitos dos fármacos , Pele/patologia , Tinospora/química
11.
Planta ; 242(4): 869-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25998525

RESUMO

MAIN CONCLUSION: UV-B-caused DNA hypomethylation and UV-B-mediated epigenetic activation of additional WRKY-binding site(s) in the DBR2 promoter may contribute to the overexpression of the DBR2 gene in Artemisia annua. DNA methylation is one of the key mechanisms behind stress-induced transcriptional switch off/on. Here, we evaluate the DNA methylation level in response to UV-B radiation in Artemisia annua which produces artemisinin, a sesquiterpene that has been recommended by WHO for the frontline treatment of malaria. However, the drug is facing serious shortage due to its low concentration in plants. UV-B treatment (3 h) enhanced artemisinin concentration up to 1.91-fold as compared to control. A key regulatory gene of artemisinin biosynthesis, DBR2 was upregulated under UV-B. This study presents observations regarding contributions of DNA methylation to the gene regulation using DBR2 as an example. Restriction digestion of genomic DNA by isoschizomers (MspI and HpaII) suggested UV-B involvement in DNA hypomethylation in A. annua. The global level of DNA methylation (R) was 3.4 and 5.9% for UV-B treated and control plants, respectively, attesting hypomethylation of DNA in response to UV-B. Further bisulfite sequencing PCR showed demethylation at two CHG sites in 18S rRNA gene. Similarly, bisulfite sequencing of promoter region of DBR2 has demonstrated demethylation at 4 CG-, 4 CHH- and 2 CHG-sites. In silico analysis revealed UV-B-mediated demethylation at seven putative transcription factor binding sites including WRKY, which are positive regulators of artemisinin biosynthesis. UV-B treatment has resulted in activation of additional WRKY-binding site in UV-B-treated plants compared with single active WRKY-binding site in control and this could be the probable reason for overexpression of DBR2. It is suggested that DNA demethylation is an important epigenetic response to UV-B radiation in A. annua that surely will provide new horizons to further elucidate the mechanistic evidence of plant's responses to UV-B radiation.


Assuntos
Artemisia annua/genética , Metilação de DNA , Oxirredutases/genética , Proteínas de Plantas/genética , Raios Ultravioleta , Sequência de Bases , Sítios de Ligação , Genes de Plantas , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Ribossômico 18S/genética , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/metabolismo
12.
Planta ; 240(3): 611-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25023630

RESUMO

MAIN CONCLUSION: UV - B radiation exposure for upto 3 h did not cause direct damage to physiology, but adjusted secondary metabolism and metabolites accumulation as an effective acclimation mechanism to mitigate the adverse effects of radiation. Artemisia annua L. plants were irradiated with UV-B radiation (280-315 nm; 2.8 Wm(-2)) for different short-term (1, 2, 3 and 4 h) durations. UV-B irradiation of 3 h reduced the photosynthetic rate, stomatal conductance and transpiration rate. However, F v/F m, a sensitive indicator of photosynthetic inhibition, remained stable (0.78) upto 3 h, thereafter it declined sharply (0.72). Interestingly, transcript level of LHCB1, PSBA and PSBO genes related to photosystem II (PSII) were induced under UV-B exposure. In addition, genes coding for Rubisco small (RBCS1B) and large (RBCL) subunits were also upregulated upto 3 h. To mitigate the adverse effects of UV-B radiation, plants tremendously induced defense-related secondary metabolites such as antioxidative phenolics, UV-B absorbing flavonoids, anthocyanins and protective terpenes. The GC-MS analysis of essential oils revealed relatively higher production of monoterpenes over sesquiterpenes as well as 1.2-folds higher total oil yield under UV-B radiation. Owing to its diverse biological activities, the altered quantity and quality of essential oil of A. annua may contribute towards improving its therapeutic properties. The results suggest that UV-B irradiation upto 3 h reduced photosynthesis, probably due to stomatal limitations rather than any direct injury to photosynthetic apparatus as evident from stable F v/F m value, upregulated genes and greater accumulation of their corresponding proteins which gauge PSII health, elevated UV-B absorbing compounds and other protective metabolites. Correlation analysis indicates a significant positive correlation of photosynthetic rate with stomatal conductance while a negative correlation with anthocyanin and monoterpene contents under UV-B radiation. The present study provides first hand information regarding photosynthesis, related physiological parameters and essential oil profiling in response to UV-B radiation in A. annua.


Assuntos
Aclimatação , Artemisia annua/efeitos da radiação , Óleos Voláteis/metabolismo , Pigmentos Biológicos/metabolismo , Metabolismo Secundário , Artemisia annua/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenóis/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Raios Ultravioleta
13.
Int J Proteomics ; 2014: 163962, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24868464

RESUMO

This paper provides the first proteomic evidence of arsenic (As) tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100 µ M As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150 µ M treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100 µ M As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H) oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants.

14.
Bioinformation ; 8(12): 555-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829730

RESUMO

15-Lipoxygenase-2 protein has been reported to play an important role in normal development of prostate, lung, skin, and cornea tissues. It behaves as a suppressor of prostate cancer development by restricting cell cycle progression and implicating a possible protective role against tumor formation. On the basis of the above report, we selected 15-LOX-2 protein to study the structural classification and functional relationship with associated protein network at computational level. Sequence alignment and protein functional study shows that it contains a highly conserved LOX motif. PLAT domain with PF01477 and LH2 domain with PF00305 were successfully observed. Arachidonate 5-lipoxygenase (PDB ID: 3O8Y) was selected as a template with 42% identity. 3D structure was successfully predicted and verified. Qualitative analysis suggests that the predicted model was reliable and stable with best quality. Quantitative study shows that the model contained expected volume and area with best resolution. Predicted and best evaluated model has been successfully deposited to PMDB database with PMDB ID PM0078035. Active site identification revealed GLU(369), ALA(370), LEU(371), THR(372), HIS(373), LEU(374), HIS(376), SER(377), HIS(378), THR(385), LEU(389), HIS(394), PHE(399), LYS(400), LEU(401), ILE(403) and PRO(404) residues may play a major role during protein-protein, protein-drug and protein-cofactor interactions. STRING database result indicated that IL (4), GPX (2 and 4), PPARG, PTGS (1 and 2), CYP (2J2, 2C8, 4A11 and 2B6), PLA (2G2A, 2G4A, 2G1B and 2G6) and A LOX (5, 15, 12 and 12B) members from their respective gene families have network based functional association with 15-LOX-2.

15.
J Photochem Photobiol B ; 105(3): 216-25, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22019553

RESUMO

Present study was undertaken to investigate if short-term UV-B (4.2 kJ m(-2) day(-1)) and UV-C (5.7 kJ m(-2) day(-1)), pre-treatments can induce artemisinin biosynthesis in Artemisia annua. Twenty-one day old Artemisia seedlings were subjected to short-term (14 days) UV pre-treatment in an environmentally controlled growth chamber and then transplanted to the field under natural conditions. Treatment of A. annua with artificial UV-B and UV-C radiation not only altered the growth responses, biomass, pigment content and antioxidant enzyme activity but enhanced the secondary metabolites (artemisinin and flavonoid) content at all developmental stages as compared to non-irradiated plants. The extent of oxidative damage was measured in terms of the activities of enzymes such as catalase, superoxide dismutase and ascorbate peroxidase. Reinforcement in the antioxidative defense system seems to be a positive response of plants in ameliorating the negative effects of UV-B and UV-C radiations. While the carotenoid content was elevated, the chlorophyll content decreased under UV-B and UV-C pre-treatments. The reverse transcription PCR analysis of the genes associated in artemisinin/isoprenoid biosynthesis like 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), cytochrome P450 oxidoreductase (CPR) and amorpha-4,11-diene synthase (ADS) genes at different growth stages revealed UV induced significant over-expression of the above protein genes. UV-B and UV-C pre-treatments, led to an increase in the concentrations of artemisinin at full bloom stage by 10.5% and 15.7% than that of the control respectively. Thus, the result of our study suggests that short term UV-B pre-treatment of seedlings in greenhouse prior to transplantation into the field enhances artemisinin production with lesser yield related damages as compared to UV-C radiation in A. annua.


Assuntos
Antimaláricos/metabolismo , Artemisia annua/metabolismo , Artemisia annua/efeitos da radiação , Artemisininas/metabolismo , Raios Ultravioleta/efeitos adversos , Antioxidantes/metabolismo , Artemisia annua/enzimologia , Artemisia annua/fisiologia , Biomarcadores/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos da radiação , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Prolina/metabolismo , Plântula/enzimologia , Plântula/metabolismo , Plântula/fisiologia , Plântula/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...